MACHTSFUNCTIES | Overzicht |
Totaalbeeld | |
AchtergrondenEen kwadraat is (de oppervlakte van) een vierkant, in de Oudheid werden kwadraten altijd door vierkanten voorgesteld. En (vierkants)wortels zijn de lengten van de zijden van een vierkant. Heel lang kon daar alleen meetkundig mee worden gemanipuleerd, want in de Oudheid waren de enige getallen 1, 2, 3, ... en de verhoudingen van die getallen (breuken dus). En daarmee was bijvoorbeeld geen getal, het kon alleen worden benaderd met getallen. Hetzelfde gold voor kubussen (derde machten zouden wij zeggen) en kubische wortels (derdemachts wortels). Maar heel af en toe waren dat getallen, meestal niet. Toch werd met dergelijke machten gewerkt, maar steeds als vierkant of kubus. Ook gewone getallen (meetbare getallen) waren eigenlijk concrete lengtes net als wortels en π (onmeetbare getallen). Tot ruim voorbij de Middeleeuwen werd op die manier over getallen gedacht.
Vergelijkingen werden geformuleerd in termen van "een vierkant en een lengte zijn samen 90, hoe groot is die lengte?". Pas veel later ontstonden in West-Europa de moderne notaties zoals de gewoonte om letters te gebruiken voor variabelen en het wortelteken. Ook werd het getalbegrip verruimt, zodat alle wortels als getallen werden opgevat. |
|
Samenvatten | |
Achtergronden | |
Toepassingen | |
Opgaven | |