AFGELEIDE FUNCTIES | Overzicht |
Buigpunten | |
InleidingZodra de helling van de grafiek overgaat van toenemende stijging (of daling) naar afnemende stijging (of daling), of omgekeerd, spreek je van een buigpunt. In zo'n buigpunt heeft de helling een (locaal) maximum of minimum. Je vindt buigpunten dus door naar de extremen van de afgeleide te zoeken. » VerkennenJe leert nu:
|
|
Inleiding | |
Uitleg | |
Theorie | |
Voorbeeld 1 | |
Voorbeeld 2 | |
Voorbeeld 3 | |
Opgaven | |