Vergelijkingen
Antwoorden bij de opgaven
z
=
1
V
z
=
-
0
.
5
+
0
.
5
i
3
V
z
=
-
0
.
5
-
0
.
5
i
3
z
=
0
.
5
2
+
0
.
5
i
2
V
z
=
0
.
5
2
-
0
.
5
i
2
V
z
=
-
0
.
5
2
+
0
.
5
i
2
V
z
=
-
0
.
5
2
-
0
.
5
i
2
-
-
z
=
-
2
.
5
±
0
.
5
i
15
-
z
1
=
-
1
+
0
.
5
2
+
(
1
+
0
.
5
2
i
;
z
2
=
-
1
cos
(
7
12
π
)
+
(
1
+
sin
(
7
12
π
)
)
i
;
z
3
=
-
1
+
cos
(
11
12
π
)
+
(
1
+
sin
(
11
12
π
)
)
i
;
z
4
=
-
1
-
0
.
5
2
+
(
1
-
0
.
5
2
)
i
;
z
5
=
-
1
+
cos
(
19
12
π
)
+
(
1
+
sin
(
19
12
π
)
)
i
;
z
6
=
-
1
+
cos
(
23
12
π
)
+
(
1
+
sin
(
23
12
π
)
)
i
-
z
=
7
13
-
22
13
i
z
=
1
+
2
i
z
=
-
1
.
5
i
z
1
=
0
.
5
3
+
0
.
5
i
;
z
2
=
-
0
.
5
3
+
0
.
5
i
;
z
3
=
-
i
z
1
=
2
+
i
2
;
z
2
=
-
2
+
i
2
;
z
3
=
-
2
-
i
2
;
z
4
=
2
-
i
2
;
z
1
=
-
0
.
5
2
+
0
.
5
i
2
;
z
2
=
0
.
5
2
-
0
.
5
i
2
z
1
=
3
i
;
z
2
=
-
1
.
5
3
-
1
.
5
i
;
z
3
=
1
.
5
3
-
1
.
5
i
z
1
=
3
+
i
;
z
2
=
-
2
+
i
3
;
z
3
=
-
3
-
i
;
z
4
=
2
-
i
3
z
1
=
0
.
25
2
-
0
.
25
i
2
;
z
2
=
-
0
.
25
2
+
0
.
25
i
2
z
1
=
1
+
i
;
z
2
=
2
i
;
z
3
=
-
1
;
z
4
=
0
z
1
=
-
1
6
+
1
6
i
35
;
z
2
=
-
1
6
-
1
6
i
35
z
1
=
3
+
i
;
z
2
=
-
3
-
i
z
1
≈
0
.
36
+
1
.
72
i
;
z
2
≈
-
1
.
54
+
3
.
49
i
;
z
3
≈
-
2
.
02
+
0
.
78
i
z
1
=
-
1
+
0
.
5
i
2
;
z
2
=
-
1
-
0
.
5
i
2
Eerst schrijven als
z
4
=
-
16
V
z
4
=
1
etc.
z
=
3
.
2
-
2
.
4
i
z
1
=
1
+
2
+
i
2
;
z
2
=
1
-
2
-
i
2
z
1
=
1
.
5
+
0
.
5
i
3
;
z
2
=
i
3
;
z
3
=
-
1
.
5
+
0
.
5
i
3
;
z
4
=
-
1
.
5
-
0
.
5
i
3
;
z
5
=
-
i
3
;
z
6
=
1
.
5
-
0
.
5
i
3
z
=
0
z
=
±
e
-
0
.
5
π
-
x
=
2
x
3
+
6
x
-
20
=
(
x
-
2
)
(
x
2
+
2
x
+
10
)
=
0
geeft
x
=
2
V
x
=
-
1
±
3
i
x
=
-
4
V
x
=
-
0
.
5
±
0
.
5
i
3
x
=
1
3
V
x
=
-
2
±
i
2
z
=
0
V
z
=
±
0
.
5
3
+
1
.
5
i
z
=
0
.
4
+
0
.
2
i
V
z
=
-
0
.
4
-
0
.
2
i
z
1
≈
1
.
93
+
0
.
52
i
;
z
2
≈
0
.
52
+
1
.
93
i
;
z
3
≈
-
1
.
41
+
1
.
41
i
;
z
4
≈
-
1
.
93
-
0
.
52
i
;
z
5
≈
-
0
.
52
-
1
.
93
i
;
z
6
≈
1
.
41
-
1
.
41
i
z
1
≈
-
0
.
62
-
3
.
12
i
;
z
2
≈
0
.
12
+
0
.
62
i