Veranderingen per stap
Inleiding
www.math4all.nl > MAThADORE-basic HAVO/VWO > 4/5/6 VWO wi-c > Veranderingen > Per stap > Inleiding
Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.
Uitleg
www.math4all.nl > MAThADORE-basic HAVO/VWO > 4/5/6 VWO wi-c > Veranderingen > Per stap > Uitleg
Opgaven
-
Bekijk de grafiek van de gemiddelde dagtemperatuur in de Uitleg.
- Maak zelf een tabel met 'toenames' vanaf `t=0` met een stapgrootte van Δt = 3.
- Teken zelf het toenamendiagram van de temperatuurgrafiek met een stapgrootte van Δt = 3.
Theorie
www.math4all.nl > MAThADORE-basic HAVO/VWO > 4/5/6 VWO wi-c > Veranderingen > Per stap > Theorie
Bestudeer eerst de Theorie. In de opgaven wordt je naar de Voorbeelden verwezen.
Opgaven
- In Voorbeeld 1 zie je hoe je een toenamediagram maakt bij een gegeven grafiek.
Je ziet hier de grafiek van een functie. Je laat de waarden van `x` oplopen met een stapgrootte 1. De bijbehorende verandering van de functiewaarden kun je in een tabel zetten.
- Maak een toenametabel die begint bij `x=-2`.
- Teken het bijpassende toenamediagram.
- Maak op je grafische rekenmachine de grafiek van de functie van `f` met voorschrift `f(x)=-x^3+6*x` op het interval `[-3,3]`.
- Met de grafische rekenmachine kun je een toenametabel met stapgrootte 1 laten
maken. In Voorbeeld 2 zie je hoe dat gaat.
Maak een toenametabel die begint
bij `x=-3`.
- Wat weet je op grond van alleen de toenametabel van het maximum van deze
functie?
- Dat zit tussen `x=0` en `x=1` want bij die waarden horen dezelfde toenamen.
- Dat zit tussen `x=0` en `x=1` want bij die waarden horen de grootste toenamen.
- Dat zit bij `x=1,5` want precies daar gaan de toenamen over in afnamen.
- Tussen `x=1` en `x=2` want bij die waarden gaan de toenamen over van positief in negatief.
- Teken het bijpassende toenamediagram.
-
Je ziet hier het toenamediagram van een functie `f`.
Schets een mogelijke grafiek van `f`.
-
Hier zie je het toenamediagram van de grafiek van een functie `f` waarvoor geldt: `f(0)=4`.
- Maak nu een grafiek van functie `f`, bekijk Voorbeeld 3 nog maar eens
- Je kunt wel een mogelijke grafiek van `f` tekenen. Maar waarom zijn er nog meerdere mogelijkheden?
- Het toenamediagram is te onduidelijk om functiewaarden nauwkeurig uit af te lezen.
- Omdat een toenamediagram een vaste stapgrootte heeft kun je geen tussenliggende functiewaarden bepalen.
- Er zijn meerdere toenametabellen mogelijk bij dit toenamediagram.
Verwerken
-
Dit is een deel van de grafiek van een functie.
Teken bij deze grafiek een toenamediagram met stapgrootte `1`, te beginnen bij `x=-2`.
- Gegeven is de functie `f` met voorschrift `f(x)=0,5*x^4-4x^2+8`.
- Met de grafische rekenmachine kun je de grafiek van deze functie bekijken en een toenametabel maken. Teken een toenamediagram op het interval `[-3,3]` met een stapgrootte van `0,5`.
- Er is precies één interval waarop de grafiek toenemend daalt. Welk interval is dat? En hoe zie je dat aan het toenamediagram?
- Waarom kun je op grond van het toenamediagram concluderen dat er waarschijnlijk drie extremen zijn?
-
In een pretpark is vanaf de opening om 8:00 uur ’s morgens tot de sluitingstijd om 18:00 uur elk uur het aantal ingaande en uitgaande bezoekers geteld. Het verschil van beide is de toename (of afname) van het aantal bezoekers. Hier zie je deze toename weergegeven.
- Maak nu een grafiek van het totaal aantal bezoekers afhankelijk van het uur van deze dag, vanaf 8:00 uur tot en met 18:00 uur.
- Rond welk tijdstip waren er waarschijnlijk de meeste bezoekers in het pretpark?
- Kun je vaststellen hoeveel bezoekers er maximaal in het park waren op enig moment die dag?
Licht je antwoord toe.
- Biologen houden het verloop van de aantallen van een bepaald soort vlinder in een afgesloten natuurgebied bij. Deze tabel geeft de verzamelde informatie weer.
Jaartal |
2000 |
2001 |
2002 |
2003 |
2004 |
Aantal vlinders |
2450 |
2050 |
1850 |
1665 |
1580 |
Verschil t.o.v. voorgaande jaar |
|
–400 |
–240 |
–145 |
–85 |
Het lijkt erop dat het verschil `V` t.o.v. het voorgaande jaar exponentieel verandert met de tijd `t` in jaren. Er lijkt te gelden `V=-400*0,6^(t-1)` met `t = 0` in het jaar 2000.
- Ga na of deze formule in overeenstemming is met de gevonden verschillen.
- Ga er van uit dat deze formule geldig blijft in de jaren na 2004. Teken een toenamediagram van het aantal vlinders in dit natuurgebied met een
stapgrootte van 1 jaar.
- Maak ook een grafiek van het aantal vlinders `N` in de loop van de jaren.
- Van wat voor soort daling is er sprake bij het aantal vlinders? Hoe kun je dat aan het toenamediagram zien?
- Het aantal vlinders van deze soort lijkt zich in dit natuurgebied te stabiliseren. Hoe kun je dat aan het toenamediagram zien? En wat betekent dit voor
de grafiek van het aantal vlinders?
Testen
-
Je ziet hier de grafiek van de lengte van een man vanaf zijn twaalfde levensjaar tot zijn huidige leeftijd.
- Maak bij deze grafiek een toenamediagram met een stapgrootte van 1 jaar.
- Hoe kun je aan het toenamediagram zien dat de grafiek nooit dalend is?
- Waarom mag je op grond van het toenamediagram alleen nooit de conclusie trekken dat de grafiek nooit dalend is?
- Gedurende welke periode is zijn lengte constant? Hoe zie je dat aan het toenamediagram?
- Gedurende welke perioden is de groeisnelheid constant? Hoe zie je dat aan het toenamediagram?
-
Bekijk met je grafische rekenmachine de grafiek van de functie `f(x)=-0,5*x^4+4*x^2` op het interval `[-4,4]`.
- Teken een toenamediagram met een stapgrootte van `0,5`.
- Opwelk interval is er sprake van een afnemende daling? Hoe zie je dat aan het toenamediagram?
- Hoe kun je in het toenamediagram de plaats van de extremen van de functie terugvinden?
-
De Amerikaanse dollar stond dinsdag op een koers van € 1,220. De figuur heeft betrekking op dezelfde week van zondag tot en met vrijdag. In de figuur zie je de toename of afname van de koers per dag in tienden van centen nauwkeurig.
Teken een grafiek waarin de koers van de dollar in de loop van die week zichtbaar is.