Exponenten en machten
Antwoorden bij de opgaven
-
-
`root[n](g) = g^(1/n)`
-
`(g^a)^b = g^(ab)`
-
`(g^a)/(g^b) = g^(a-b)`
-
`1/31`
-
-
`1/9`
-
`3`
-
`32`
-
`16`
-
`1/27`
-
`4`
-
`32`
-
-
`2x^2 * root[3](x)`
-
`3/(2x^2)`
-
`4/(root[4](x^3))`
-
`2sqrt(x)`
-
`2x^2 sqrt(x)`
-
`1/(3x^4)`
-
`3/(x^2 sqrt(x))`
-
-
`3/2 x^(-1)`
-
`3/2 x^(-1 1/2)`
-
`4x^(2/3)`
-
`2x^(1 1/2)`
-
`2x^(-3 2/3)`
-
`12 * 3^(-0,5x + 1) = 12 * 3^(-0,5x) * 3^1 = 12 * 3 * (3^(-0,5))^x = 36 * (1/(sqrt(3)))^x`
Dus `b=36` en `g=1/(sqrt(3))`.
-
-
`1/(17^3)`
-
`1/8`
-
`3/4`
-
`49`
-
`4/3`
-
-
`1/x`
-
`1/(sqrt(x))`
-
`root[4](x^3)`
-
`x root[4](x^3)`
-
`3/(x sqrt(x))`
-
`1/(2x^2 root[4](x^3))`
-
-
`x^(-2 1/2)`
-
`1/3 x^(-1/4)`
-
`1/2 x^(1/2)`
-
`1/2 x^(-1 1/2)`
-
`27x^(4 1/2)`
-
-
`64`
-
`32`
-
`4`
-
`10`
-
`10`
-
`7`
-
`5`
-
`16`
-
Puzzel net zo lang tot je er zelf uit komt!
-
-
`f(x) = 3 * (sqrt(2))^x`
-
`f(x) = 0,25 * 2^x`
-
`f(x) = 1/9 * 9^x`
-
-
`1/3`
-
`32`
-
`16`
-
`1/3`
-
-
`12x^11`
-
`3x^(-1)`
-
`2x^(-1/2)`
-
`4x^(1 1/2)`
-
`f(x) = 3 * 16^x`