Logaritmen
Antwoorden bij de opgaven
-
-
Voer in Yi=2^X en Y2=20000, stel het venster goed in (bijvoorbeeld `[0,20]xx[0,25000]`.
Je vindt met behulp van de Intersect-optie het getal 14,29.
-
Zie de Uitleg.
-
Na 2`log(10000)` uur, dat is ongeveer 13,28 uur en dis 13 uur en 17 minuten.
-
-
`3000 * 0,98^t = 2800`
-
`0,98^t = 2800/3000 = 14/15`
-
`t = `0,98`log(14/15) ~~ 3,415`
-
-
`x = `2`log(7) ~~ 2,807`
-
`x = `3`log(81) = 4`
-
`x = `1/3`log(9) = -2`
-
`x = `1/3`log(0,01) ~~ 4,192`
-
`x = `10`log(1000000) = 6`
-
`x = `0,001`log(0,1) = 1/3`
-
`x = `0,001`log(100) = -2/3`
-
-
5`log(5^3) = 3`
-
5`log(5^(-2)) = -2`
-
4`log(4^3) = 3`
-
1/4`log((1/4)^(-3)) = -3`
-
1/3`log((1/3)^4) = 4`
-
2`log(2^(1/2)) = 1/2`
-
-
`5^3 = 125` en `5^4 = 625`, dus `3 < `5`log(150) < 4`.
-
`10^2 = 100` en `10^3 = 1000`, dus `2 < `10`log(758) < 3`.
-
`2^5 = 32` en `2^6 = 64`, dus `5 < `2`log(60) < 6`.
-
`2^(-3) = 1/8` en `2^(-2) = 1/4`, dus `-3 < ``log(17) < -2`.
-
`(1/2)^(-4) = 16` en `(1/2)^(-5) = 32`, dus `-5 < `1/2`log(20) < -4`.
-
`(1/3)^1 = 1/3` en `(1/3)^2 = 1/9`, dus `1 < `1/3`log(15) < 2`.
-
-
3,1
-
2,9
-
5,9
-
-2,8
-
-4,3
-
1,5
-
-
`3^x = 600`, dus `x = `3`log(600) ~~ 5,8`.
-
`1,7^t = 525`, dus `t = `1,7`log(525) ~~ 11,8`.
-
`0,6^t = 30/572` , dus `t = `0,6log(30/572) ~~ 5,8`.
-
Los op `10000 * 1,08^t = 15000`, oftewel `1,08^t = 1,5`, dus `t = `1,08`log(1,5) ~~ 5,268`.
Dus na 5 jaar, 3 maanden en 7 dagen. Dat is april 2005.
-
-
4`log(4^3) = 3`
-
4`log(400) ~~ 4,3` (met de GR)
-
1/3`log(60) ~~ -3,7` (met de GR)
-
1/3`log((1/3)^(-4)) = -4`
-
1/3`log((1/3)^(4)) = 4`
-
1/10`log((1/10)^(-6)) = -6`
-
-
`6^1 = 6` en `6^2 = 36`, dus `1 < `6`log(30) < 2`.
-
`3^3 = 27` en `3^4 = 81`, dus `3 < `3`log(70) < 4`.
-
`(1/2)^(-3) = 8` en `(1/2)^(-4) = 16`, dus `-4 < `1/2`log(10) < -3`.
-
`(1/3)^4 ~~ 0,012` en `(1/3)^5 ~~ 0,004`, dus `4 < `1/3`log(0,001) < 5`.
-
-
`5,026`
-
`-8,399`
-
`-3,597`
-
`0,306`
-
-
`10^x = 0,01`, dus `x = `10`log(0,01) = -2`.
-
`2^x = 60`, dus `x = `2`log(60) ~~ 5,9`.
-
`0,8^t = 0,5`, dus `t = `0,8log(0,5) ~~ 3,1`.
-
`2^t = 3` geeft `t = `2`log(3) ~~ 1,58` uur.
-
-
2`log(2^(2,5)) = 2,5`
-
1/3`log((1/3)^(-3)) = -3`
-
-
`2^9 = 512` en `2^(10) = 1024`, dus `9 < `2`log(513) < 10`.
2`log(513) = 9,003`.
-
`0,4^(-4) ~~ 29` en `0,4^(-3) = 15,625`, dus `-4 < `0,4`log(25) < -3`.
0,4`log(25) = -3,513`.
-
-
`4^x = 35/6`, dus `x = `4log(35/6) ~~ 1,27`.
-
`1,08^t = 12/7`, dus `t = `1,08`log(12/7) ~~ 7,00`.
-
`S(t) = 150 * 0,85^t = 10`, geeft `0,85^t = 1/15` en dus `t = `0,85log(1/15) ~~ 16,7`.
Dus na 17 keer spoelen.